Multiscale damage simulation
نویسندگان
چکیده
Numerous materials show a softening behaviour at dynamic loading. The decrease of stress is caused by the evolution in the microscale in terms of areas where the local stiffness is reduced, e.g. due to micro-void growth. For a numerical treatment of this material behaviour, phenomenological damage approaches are used in daily engineering practice. For a better understanding of the micromechanical process of such phenomenological models, multiscale methods are becoming increasingly important. The physical quantities that are responsible for the microstructural evolution associated with the damage process are transferred into the numerical model. In this context, the method of configurational forces will be used to describe the geometrical changes of damaged areas. With the help of homogenization, macroand microscale will be coupled. In consequence, each Gaussian point of the macroscale is modelled by an own microstructure (RVE), where the microscale evolves during the loading process according to observable damage phenomena. Hereby, we present the general case of hyperelastic materials at finite strains.
منابع مشابه
A FEM Multiscale Homogenization Procedure using Nanoindentation for High Performance Concrete
This paper aims to develop a numerical multiscale homogenization method for prediction of elasto-viscoplastic properties of a high performance concrete (HPC). The homogenization procedure is separated into two-levels according to the microstructure of the HPC: the mortar or matrix level and the concrete level. The elasto-viscoplastic behavior of individual microstructural phases of the matrix a...
متن کاملMultiscale Analysis of Transverse Cracking in Cross-Ply Laminated Beams Using the Layerwise Theory
A finite element model based on the layerwise theory is developed for the analysis of transverse cracking in cross-ply laminated beams. The numerical model is developed using the layerwise theory of Reddy, and the von Kármán type nonlinear strain field is adopted to accommodate the moderately large rotations of the beam. The finite element beam model is verified by comparing the present numeric...
متن کاملNumerical Simulation of a Hybrid Nanocomposite Containing Ca-CO3 and Short Glass Fibers Subjected to Tensile Loading
The tensile properties of multiscale, hybrid, thermoplastic-based nanocomposites reinforced with nano-CaCO3 particles and micro–short glass fibers (SGF) were predicted by a two-step, three-dimensionalmodel using ANSYS finite element (FE) software. Cylindrical and cuboid representative volume elements were generated to obtain the effective behavior of the multiscale hybrid composites. In the fir...
متن کاملAn Overview of the State of the Art in Atomistic and Multiscale Simulation of Fracture
The emerging field of nanomechanics is providing a new focus in the study of the mechanics of materials, particularly in simulating fundamental atomic mechanisms involved in the initiation and evolution of damage. Simulating fundamental material processes using first principles in physics strongly motivates the formulation of computational multiscale methods to link macroscopic failure to the u...
متن کاملApplication of M3GM in a Petroleum Reservoir Simulation
Reservoir formations exhibit a wide range of heterogeneity from micro to macro scales. A simulation that involves all of these data is highly time consuming or almost impossible; hence, a new method is needed to meet the computational cost. Moreover, the deformations of the reservoir are important not only to protect the uppermost equipment but also to simulate fluid pattern and petroleum produ...
متن کاملMultiscale approach to radiation damage induced by ion beams: complex DNA damage and effects of thermal spikes
We present the latest advances of the multiscale approach to radiation damage caused by irradiation of a tissue with energetic ions and report the most recent advances in the calculations of complex DNA damage and the effects of thermal spikes on biomolecules. The multiscale approach aims to quantify the most important physical, chemical, and biological phenomena taking place during and followi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008